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Term Verbal Description Symbolic
1. Derivative of f at a: The instantaneous rate of change a)=L
’ dx

of the function at a or the slope
of the tangent line at a

x=a

f(a +h)— f(a)

=lim

X7

2. Critical Number ¢

A number c in an open (a,b)
interval where the derivative is
zero or does not exist

ce (a,b) where

f’(c)=0o0rf’(c) DNE

3. First Derivative Test

a) If the first derivative changes from
negative to positive at c then the
function has a relative minimum at ¢
b) If the first derivative changes from

positive to negative at c then the
function has a relative maximum at ¢

a)Iff’(c) A's from —toH
= f'(c) is amin
b)Iff’(c) A's from +to —

= f'(c) is amax

4. Concavity Test

a) If the second derivative is positive on
an interval I then the function is
Concave Up on1

b) If the second derivative is negative
on an interval I the function is
Connecave down on |

a)Iff’(c)>0onI

f'(x)<0= f(x)isCU

Concave Down

“(
= f(x)isCUon/
b)Iff"(c) <0onl
= f(x)isCDon/

5. Point of Inflection at ¢

J: Is a point where the concavity changes of f

f’: Is a point where f” changes from increasing to
decreasing or decreasing to increasing

f: Is a point where f”’ changes from positive
to negative or negative to positive

f A's fromCUto CDor (Mto (U]
f'A'sfrom 'to Nor \sto
f7(x) A'sfrom+to —or — to

Concave Up

f'(x)>0= f(x) isCU

Point of Inflection

c
f7(c)A's from+to -
= f(c) isaPOI

Motion definitions and Equations
6. Displacement: A Vector quantity that
represents the net change in position

7. Distance: A scalar quantity that
represents total movement regardless of
sign

d(t) =‘x(b)—x(a)‘ =_ﬁv(t)‘a}‘

8. Velocity: A Vector quantity that
represents the rate of change of position

9. Speed: A scalar quantity that
represents the rate of covering distance

Speed :‘v(t)‘

10. Acceleration: A vector quantity that
represents the rate of change of velocity

11. Given initial position s (a) = C the final position is

given by s(b) =s(a)+ J.ab s'(r)dt
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Ahemisprerical bowl is being drained of water. The radius is modelled by a twice differentiable function
Roftimet. For 0=t=11 the water level is falling.
The table below gives values of R(t) of t on 0=t =11 and R(7)=10

Note: The volue of a hemisphere is given by V = % o

1. Approximate R’ (4.5). Show the computations that lead to your answer. What is

the unit of your answer.

2. Estimate the radius of the water in the bowl when 7 =6.3, using the tangent line approximation
at t =6.Is this an upper of lower estimate? Give a reason for your answer.

11
3. Use a left Riemann sum with four sub intervals to find J.R’ (1) dt. State the meaning of your answer
0
in the context of the problem with accurate units. Is this an over or under estimate?

11
4. Find jR’ (7) dt show work state what your answer means with the accurate units.
0
1 11
5. Use a midpoint sum with two sub intervals to approximate 1 IR’(I) dt. Using correct units explain
0

11

what I—IIJ.R'(t)dt. means in the context of the problem.
0

6. Find the rate of change of volume at # =6.

7. The Rate at which water leaves the bowl from 11<t <13 is given by J (¢) =—;(z‘—11)3 +4. Find

the rate at which water is leaving the bowl when 1 =12.



A hemisprerical bowl is being drained of water. The radius is modelled by a twice differentiable
function R of time t. For0 < ¢ < 11 the water level is falling.
The table below gives values of the rate of change of radius R'(t) of ton0 < t < 11 and R(6) =10

5| ¢ (mins) 0 [3]6 [85]11
R'(t)m/min | 19 |g|65|5 |4
1. Approximate R”(4.5). Show the computations that lead to your answer. What is

Note: The volume of a hemisphere is given by V = %m’

the unit of your answer.
2. Estimate the radius of the water in the bowl when ¢ = 6.3, using the tangent line

approximation at ¢ = 6. Is this an upper of lower estimate? Give a reason for your answer.
11

3. Use a left Riemann sum with four sub intervals to find jR'(t) dt. State the meaning of your answer
0

in the context of the problem with accurate units. Is this an over or under estimate?

11
4. Find jR”(t) dt show work state what your answer means with the accurate units.
0
1 11
5. Use a midpoint sum with two sub intervals to approximate HIR'(t) dt. Using correct
0

11
units explain what %IR'(I) dt. means in the context of the problem.
0

6. Find the rate of change of volume at t = 6.

7. The derivative of the rate at which water leaves the bowl from 11<t <13 is given by

R’(t)= —%(r -1 1)3 + 4. Find the rate at which water is leaving the bowl when ¢ =12.

8. Does R”(t) ever attain a value of —% on (0,3) Explain your reasoning.




